Effect of neoadjuvant chemoradiotherapy on angiogenesis in oesophageal cancer

C. O. McDonnell¹, D. J. Bouchier-Hayes², D. Toomey², D. Foley², E. W. Kay⁴, E. Leen¹ and T. N. Walsh

Department of Surgery, ¹Royal College of Surgeons in Ireland, James Connolly Memorial Hospital, and ²Beaumont Hospital, and Departments of Pathology, ³James Connolly Memorial Hospital and ⁴Beaumont Hospital, Dublin, Ireland

Correspondence to: Mr T. N. Walsh, Academic Centre, James Connolly Memorial Hospital, Blanchardstown, Dublin 15, Ireland (e-mail: tnwalsh@indigo.ie)

Background: Vascular endothelial growth factor (VEGF) levels are raised in the serum of patients with oesophageal carcinoma. The aim of this study was to evaluate the tumour microvasculature and the role of tumour-associated macrophages in VEGF production after neoadjuvant chemoradiotherapy and surgery for oesophageal cancer.

Methods: Sections from 92 consecutively resected oesophageal tumours were stained for VEGF, Von Willebrand factor and CD68. Twenty-seven patients received preoperative chemoradiation and 65 underwent surgical excision alone. The cellular source of VEGF was determined by parallel-section staining. Microvessel density and macrophage count were determined for each tumour by means of image analysis software.

Results: There were no significant differences between the two groups in age, sex or tumour type. Local downstaging of disease was evident in most specimens of tumours that had received preoperative chemoradiation. All tumours stained positive for VEGF, including those demonstrating a complete pathological response. Staining of parallel sections confirmed macrophages as the principal source of VEGF. Mean microvessel density was 6.4 per high-power field (h.p.f.) in tumours that received preoperative chemoradiation compared with 5.3 per h.p.f. in those treated by surgery alone (P = 0.13). A significant increase in tumour-associated macrophage infiltration was noted in tumours treated with neoadjuvant chemoradiation (22 per h.p.f.) compared with those treated by surgery alone (14 per h.p.f.) (P = 0.042).

Conclusion: Preoperative chemoradiation had little effect on the local angiogenic profile of the tumour in patients with oesophageal cancer. Tumour-infiltrating macrophages seem to be the source of persistent VEGF production after chemoradiotherapy and might explain the raised serum levels. Addition of an antiangiogenic agent to this regimen may be worthwhile in patients with oesophageal carcinoma.

Paper accepted 21 May 2003
Published online in Wiley InterScience (www.bjs.co.uk). DOI: 10.1002/bjs.4338

Introduction

The prognosis for oesophageal cancer is poor, with fewer than 10 per cent of patients surviving 5 years¹. Although surgery is undertaken with curative intent, most patients succumb to residual or recurrent disease. Preoperative chemoradiotherapy confers a survival advantage over surgery alone in patients with adenocarcinoma² and squamous cell carcinoma³. However, the benefit is modest and additional strategies are required to further enhance survival rates. Antiangiogenic agents offer one such alternative therapeutic approach⁴.

Measurement of the angiogenic index of a primary tumour by assessing microvessel density is a reliable independent prognostic factor in breast⁵, non-small-cell lung⁶, prostate⁷, and head and neck squamous cell⁸ carcinomas. Expression of the proangiogenic cytokine vascular endothelial growth factor (VEGF) and tumour microvessel density are useful prognostic indicators in oesophageal
quamous cell carcinoma9,10. VEGF plays a vital role in
tumour biology. It is a potent endothelial cell mitogen,
promoting tumour angiogenesis and inhibiting tumour cell
apoptosis11, making it an attractive target for novel ther-
apeutic approaches. VEGF levels are raised in the serum of
patients with oesophageal cancer12. Preoperative chemora-
diotherapy does not significantly alter these levels, even in
patients who have a complete pathological response12.
Serum VEGF levels fall after resection of the primary
tumour, implying that the source lies in the tumour bed12.
The source of VEGF in these patients remains unclear
and the effect of preoperative chemoradiotherapy on the
angiogenic profile of oesophageal carcinoma is unknown.
At tissue level both inflammation and fibrosis occur
after chemoradiotherapy11–15. The cellular changes mimic
those of a granulating wound, with activated macrophages
and fibroblasts replacing the malignant cells as they
are eradicated16. Macrophages may account for a large
proportion of a solid tumour mass, comprising as
much as 50 per cent of the total cellular content of
some breast carcinomas17. They are a major source of
angiogenic factors in both the healing wound18 and
in solid malignancies19,20. Previous work has identified
the macrophage as a potent source of VEGF in breast
cancer21. Similarly, fibroblasts play a significant role in
VEGF production in breast carcinoma22 and in the
healing wound23,24. The reactive inflammatory changes
that occur in a tumour following chemotherapy and
radiotherapy may lead to an increase in the macrophage
and fibroblast population. These cells may replace the
eradicated malignant cells as the principal source of
proangiogenic cytokines, explaining the persistently high
serum levels of VEGF12.

It was hypothesized that treatment of oesophageal can-
cer with chemoradiation might induce inflammatory and
fibrotic changes in the tumour resulting in increased
macrophage infiltration, a persistence of VEGF produc-
tion and little alteration in the tumour angiogenic profile.

The present study was designed to test this hypothesis,
by measuring microvessel density as a marker of angi-
genesis and using macrophage immunohistochemistry to
determine the source of VEGF production.

Patients and methods

Patients
Following ethics committee approval, paraaffin-embedded
tumour blocks from 92 consecutive patients who
had undergone resection of oesophageal carcinoma
between October 1991 and June 2000 were retrieved.
Before November 1998, patients with carcinoma of the
oesophagus were treated by surgery only. After this date,
all patients underwent chemoradiotherapy before surgery.
Patients who had preoperative chemoradiotherapy were
compared with those managed by surgical resection alone.
A subgroup of patients who received chemoradiation and
demonstrated a complete pathological response to treat-
ment was also identified.

Preoperative chemoradiotherapy
Patients were treated with preoperative chemoradiother-
apy as described previously2. Briefly, this consisted of a
5-day course of 5-fluorouracil 15 mg per kg per day fol-
lowed by cisplatin 75 mg per m2 body surface area given
day 7. Radiotherapy to a total dose of 40 Gy delivered
in 15 fractions was commenced in week 1 and continued in
weeks 2 and 3. The course of chemotherapy was repeated
on week 6 and patients underwent oesophagectomy on or
after week 8.

Pathological stage
Tumour stage was defined according to the American
Joint Committee on Cancer classification25. A complete
pathological response was defined by the absence of
residual tumour in the resected specimen and in the lymph
nodes.

Immunohistochemistry
Tumour blocks were cut into 4-µm sections, which were
mounted on poly-L-lysine-coated slides and stained using
immunohistochemical techniques for vascular endothelial
growth factor (VEGF), CD68 (a marker of human
macrophages) and Von Willebrand factor (endothelial
cell marker). Human tonsil sections were used as positive
controls and negative controls were obtained by repeating
the staining process with the specific antibody omitted.
Parallel 4-µm sections from each tumour were stained
alternatively for VEGF and CD-68 to determine the
cellular source of VEGF production.

Microvessel and macrophage counts
Five areas of high concentration of immunohistochemical
staining were identified by scanning the tumour sections
under low power (×4 magnification) with a Eclipse E600
•microscope (Nikon, USA). Microvessel counts were then
performed in each of these five areas under high-power
magnification (×40) and the mean• count obtained.
Microvessel and macrophage counts were performed using
Lucia Screen Measurement™ Version 4.21 image analysis software (Nikon). Any brown-stained vessel or endothelial cell that was clearly separate from the microvessels was considered a vessel and included.

Statistical analysis

Data were analysed using GB-STAT for Windows Statistical Package (Dynamic Microsystems, USA). χ² and unpaired t tests were used to compare data between the two groups. $P \leq 0.050$ was considered significant.

Results

Paraffin-embedded tumour blocks from 92 patients with carcinoma of the oesophagus were studied. There were 47 patients (51.1 per cent) with adenocarcinoma and 42 (45.7 per cent) with squamous cell carcinoma. Three patients (3.3 per cent) had a poorly differentiated carcinoma. Twenty-seven patients (29.3 per cent) were treated with neoadjuvant chemoradiotherapy before surgery and 65 (70.7 per cent) had surgical resection alone. There was a predominance of men (55 men versus 37 women). There were no significant differences between treatment groups in terms of age, sex and tumour type (Table 1).

Significantly more patients who had undergone neoadjuvant chemoradiotherapy had an early-stage tumour (Table 1), consistent with disease downstaging, as has been reported previously\(^2\). Seven patients (7.6 per cent) had stage 0 tumours at the time of resection, 25 (27.2 per cent) had stage I, 28 (30.4 per cent) had stage II and 32 (34.8 per cent) had stage III disease. Sixteen of those treated with neoadjuvant therapy had lymph node-negative disease at the time of surgical resection compared with 16 of 65 patients managed with oesophagectomy alone ($P = 0.013$ (Table 1)).

There was no significant difference in microvessel count between the two groups. The mean(s.e.m.) microvessel count in patients who had undergone preoperative treatment was 6.4(1.0) (95 per cent confidence interval (c.i.) 5.2 to 7.3) vessels per high-power field (h.p.f) compared with 5.3(0.7) (95 per cent c.i. 4.8 to 6.7) per h.p.f. for those who had surgery only ($P = 0.13$) (Fig. 1). Microvessel counts were similar in adenocarcinomas and squamous cell carcinomas. Mean(s.e.m.) microvessel count in specimens demonstrating a complete pathological response was 5.5(0.9) (95 per cent c.i. 5.0 to 6.2) microvessels per h.p.f. (Fig. 1). This was not significantly different to that of tumours with a partial response or those treated with surgery alone.

Immunohistochemistry confirmed the presence of VEGF staining in the primary tumour in patients with a complete pathological response to preoperative chemoradiation (stage 0); all four adenocarcinomas and three squamous cell tumours response stained positive for VEGF.

Parallel sections of tumour stained for VEGF and CD68, as a marker of macrophages, demonstrated that areas of high concentration of CD68 staining mirrored high concentrations of VEGF staining, suggesting that tumour-associated macrophages were a potent source of VEGF (Fig. 2a,2b). This applied to both squamous cell and adenocarcinomas.

There were significantly more tumour-associated macrophages in sections of tumours treated with chemoradiation than in those from patients who underwent excision alone: mean(s.e.m.) number of CD68 positive cells 22(1.7) (95 per cent c.i. 18.3 to 26.9) versus 14(0.8) (95 per cent c.i. 12.7 to 16.3) per h.p.f. respectively ($P = 0.042$). There was no significant difference in the tumour-associated macrophage count between adenocarcinomas and squamous cell carcinomas in either treatment group.

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Neoadjuvant ($n = 27$)</th>
<th>Surgery ($n = 65$)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex ratio (M:F)</td>
<td>17:10</td>
<td>44:21</td>
<td>0.711</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>66</td>
<td>67</td>
<td>0.3</td>
</tr>
<tr>
<td>Squamous Cell Carcinoma</td>
<td>11 (40.7)</td>
<td>31 (47.8)</td>
<td>0.147</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>15 (55.6)</td>
<td>32 (49.2)</td>
<td>0.22</td>
</tr>
<tr>
<td>Stage 0</td>
<td>7 (26.0)</td>
<td>0 (0)</td>
<td>0.0011</td>
</tr>
<tr>
<td>Node negative</td>
<td>16 (59.3)</td>
<td>16 (24.6)</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Values in parentheses are percentages.

Fig. 1 Effect of neoadjuvant chemoradiotherapy on microvessel density in the primary tumour. h.p.f, High-power field; CPR, complete response.
Angiogenesis in oesophageal cancer

a VEGF-positive cells

b CD68-positive cells

Fig. 2

a Tumour section stained for vascular endothelial growth factor (VEGF) (brown staining). b Parallel section of tumour stained for CD68 (brown staining). The staining pattern corresponds to the areas of most intense VEGF staining.

Discussion

Preoperative chemoradiation downstages tumours and improves survival of patients with oesophageal cancer, but does not change the serum levels of the proangiogenic cytokine VEGF during or after treatment.

In this series of 92 oesophagectomy specimens, microvessel density in tumours from patients who received neoadjuvant chemoradiotherapy was similar to that in lesions from patients managed with excision alone. Even patients who demonstrated a complete pathological response showed no reduction in tumour vasculature, suggesting that pretreatment with chemoradiotherapy has a minimal effect on the angiogenic component of tumour growth.

Perez-Atayde et al. reported that the involution of microvessels in the bone marrow following chemotherapy lagged behind the killing of malignant cells in children with acute lymphoblastic leukaemia. This may explain the persistently high microvessel count seen in tumours from patients who received preoperative chemoradiotherapy, even with a complete pathological response. The timing of surgery after the preoperative regimen may be crucial, at least with respect to the expression of these markers. All patients included in this study underwent oesophagectomy within 2 weeks after the completion of preoperative chemoradiotherapy. Examination of tumours with a longer interval between completion of neoadjuvant treatment and oesophagectomy might help determine whether microvessel regression occurs.

An alternative explanation is that tumour endothelial cells are resistant to the effects of the neoadjuvant regimen and that these cells remain as a potential source, facilitating local tumour recurrence. It seems reasonable to speculate that the addition of an antiangiogenic agent to the existing chemoradiotherapy regimen might be beneficial.

Chemoradiotherapy results in tumour cell apoptosis and necrosis, with subsequent inflammation and fibrosis. This results in an increase in the tumour-associated macrophage count. These cells, together with fibroblasts, are a potent source of VEGF and, as demonstrated, the excised mass in patients who display a complete pathological response still stains positive for VEGF.

Treatment with chemoradiation may induce an ‘angiogenic switch’, promoting the growth of new blood vessels within the tumour, with possible detrimental effects. The development of telangiectasia is a long recognized side-effect of radiation treatment.

In addition to its growth-promoting effects on endothelial cells, VEGF may promote growth of residual primary tumour cells. VEGF is a potent antiapoptotic factor for tumour cells and raised serum levels in patients with oesophageal carcinoma might facilitate the survival of high microvessel density are reported to be more sensitive to chemotherapy, suggesting that microvessel count or tissue VEGF expression might help identify patients who might benefit from adjuvant treatment.

High microvessel density has previously been associated with a poorer outcome in a number of tumours, including oesophageal squamous cell carcinoma. Tumours with a high microvessel density are reported to be more sensitive to chemotherapy, suggesting that microvessel count or tissue VEGF expression might help identify patients who might benefit from adjuvant treatment.

In this series of 92 oesophagectomy specimens, microvessel density in tumours from patients who received neoadjuvant chemoradiotherapy was similar to that in lesions from patients managed with excision alone. Even patients who demonstrated a complete pathological response showed no reduction in tumour vasculature, suggesting that pretreatment with chemoradiotherapy has a minimal effect on the angiogenic component of tumour growth.

Perez-Atayde et al. reported that the involution of microvessels in the bone marrow following chemotherapy lagged behind the killing of malignant cells in children with acute lymphoblastic leukaemia. This may explain the persistently high microvessel count seen in tumours from patients who received preoperative chemoradiotherapy, even with a complete pathological response. The timing of surgery after the preoperative regimen may be crucial, at least with respect to the expression of these markers. All patients included in this study underwent oesophagectomy within 2 weeks after the completion of preoperative chemoradiotherapy. Examination of tumours with a longer interval between completion of neoadjuvant treatment and oesophagectomy might help determine whether microvessel regression occurs.

An alternative explanation is that tumour endothelial cells are resistant to the effects of the neoadjuvant regimen and that these cells remain as a potential source, facilitating local tumour recurrence. It seems reasonable to speculate that the addition of an antiangiogenic agent to the existing chemoradiotherapy regimen might be beneficial.

Chemoradiotherapy results in tumour cell apoptosis and necrosis, with subsequent inflammation and fibrosis. This results in an increase in the tumour-associated macrophage count. These cells, together with fibroblasts, are a potent source of VEGF and, as demonstrated, the excised mass in patients who display a complete pathological response still stains positive for VEGF.

Treatment with chemoradiation may induce an ‘angiogenic switch’, promoting the growth of new blood vessels within the tumour, with possible detrimental effects. The development of telangiectasia is a long recognized side-effect of radiation treatment.

In addition to its growth-promoting effects on endothelial cells, VEGF may promote growth of residual primary tumour cells. VEGF is a potent antiapoptotic factor for tumour cells and raised serum levels in patients with oesophageal carcinoma might facilitate the survival of high microvessel density are reported to be more sensitive to chemotherapy, suggesting that microvessel count or tissue VEGF expression might help identify patients who might benefit from adjuvant treatment.

High microvessel density has previously been associated with a poorer outcome in a number of tumours, including oesophageal squamous cell carcinoma. Tumours with a high microvessel density are reported to be more sensitive to chemotherapy, suggesting that microvessel count or tissue VEGF expression might help identify patients who might benefit from adjuvant treatment.

In this series of 92 oesophagectomy specimens, microvessel density in tumours from patients who received neoadjuvant chemoradiotherapy was similar to that in lesions from patients managed with excision alone. Even patients who demonstrated a complete pathological response showed no reduction in tumour vasculature, suggesting that pretreatment with chemoradiotherapy has a minimal effect on the angiogenic component of tumour growth.

Perez-Atayde et al. reported that the involution of microvessels in the bone marrow following chemotherapy lagged behind the killing of malignant cells in children with acute lymphoblastic leukaemia. This may explain the persistently high microvessel count seen in tumours from patients who received preoperative chemoradiotherapy, even with a complete pathological response. The timing of surgery after the preoperative regimen may be crucial, at least with respect to the expression of these markers. All patients included in this study underwent oesophagectomy within 2 weeks after the completion of preoperative chemoradiotherapy. Examination of tumours with a longer interval between completion of neoadjuvant treatment and oesophagectomy might help determine whether microvessel regression occurs.

An alternative explanation is that tumour endothelial cells are resistant to the effects of the neoadjuvant regimen and that these cells remain as a potential source, facilitating local tumour recurrence. It seems reasonable to speculate that the addition of an antiangiogenic agent to the existing chemoradiotherapy regimen might be beneficial.

Chemoradiotherapy results in tumour cell apoptosis and necrosis, with subsequent inflammation and fibrosis. This results in an increase in the tumour-associated macrophage count. These cells, together with fibroblasts, are a potent source of VEGF and, as demonstrated, the excised mass in patients who display a complete pathological response still stains positive for VEGF.

Treatment with chemoradiation may induce an ‘angiogenic switch’, promoting the growth of new blood vessels within the tumour, with possible detrimental effects. The development of telangiectasia is a long recognized side-effect of radiation treatment.

In addition to its growth-promoting effects on endothelial cells, VEGF may promote growth of residual primary tumour cells. VEGF is a potent antiapoptotic factor for tumour cells and raised serum levels in patients with oesophageal carcinoma might facilitate the survival of high microvessel density are reported to be more sensitive to chemotherapy, suggesting that microvessel count or tissue VEGF expression might help identify patients who might benefit from adjuvant treatment.

High microvessel density has previously been associated with a poorer outcome in a number of tumours, including oesophageal squamous cell carcinoma. Tumours with a high microvessel density are reported to be more sensitive to chemotherapy, suggesting that microvessel count or tissue VEGF expression might help identify patients who might benefit from adjuvant treatment.

In this series of 92 oesophagectomy specimens, microvessel density in tumours from patients who received neoadjuvant chemoradiotherapy was similar to that in lesions from patients managed with excision alone. Even patients who demonstrated a complete pathological response showed no reduction in tumour vasculature, suggesting that pretreatment with chemoradiotherapy has a minimal effect on the angiogenic component of tumour growth.

Perez-Atayde et al. reported that the involution of microvessels in the bone marrow following chemotherapy lagged behind the killing of malignant cells in children with acute lymphoblastic leukaemia. This may explain the persistently high microvessel count seen in tumours from patients who received preoperative chemoradiotherapy, even with a complete pathological response. The timing of surgery after the preoperative regimen may be crucial, at least with respect to the expression of these markers. All patients included in this study underwent oesophagectomy within 2 weeks after the completion of preoperative chemoradiotherapy. Examination of tumours with a longer interval between completion of neoadjuvant treatment and oesophagectomy might help determine whether microvessel regression occurs.

An alternative explanation is that tumour endothelial cells are resistant to the effects of the neoadjuvant regimen and that these cells remain as a potential source, facilitating local tumour recurrence. It seems reasonable to speculate that the addition of an antiangiogenic agent to the existing chemoradiotherapy regimen might be beneficial.

Chemoradiotherapy results in tumour cell apoptosis and necrosis, with subsequent inflammation and fibrosis. This results in an increase in the tumour-associated macrophage count. These cells, together with fibroblasts, are a potent source of VEGF and, as demonstrated, the excised mass in patients who display a complete pathological response still stains positive for VEGF.

Treatment with chemoradiation may induce an ‘angiogenic switch’, promoting the growth of new blood vessels within the tumour, with possible detrimental effects. The development of telangiectasia is a long recognized side-effect of radiation treatment.

In addition to its growth-promoting effects on endothelial cells, VEGF may promote growth of residual primary tumour cells. VEGF is a potent antiapoptotic factor for tumour cells and raised serum levels in patients with oesophageal carcinoma might facilitate the survival
of micrometastatic tumour deposits, giving rise to later disease. As VEGF has been shown to inhibit tumour cell apoptosis\(^1\)\(^1\), and both chemotherapy and radiotherapy exert their effects by means of an induction of apoptotic cell death, VEGF expression within a tumour may enhance its ability to resist the cytotoxic effects of chemoradiation. The combination of persistently raised serum VEGF levels in patients treated with preoperative chemoradiation\(^2\), together with the finding of VEGF-positive cells, suggests that a specific anti-VEGF therapy, rather than a general antiangiogenic strategy, might enhance the efficacy of chemoradiation. Specifically targeting the macrophage might reduce VEGF levels and potentially improve the response to treatment\(^1\).

No differences were noted between adenocarcinomas and squamous cell lesions in terms of the number of patients who received neoadjuvant treatment, the incidence of complete response to treatment, microvessel density, VEGF production or tumour-associated macrophage infiltration. This is in contrast to the findings of Torres et al.,\(^2\) who reported a significantly higher microvessel density in adenocarcinomas than squamous cell lesions in a series of 67 oesophageal cancers. Several differences between in the two series might explain this disparity.

First, in the present series just over half of the samples included were adenocarcinomas, whereas in Torres’ series adenocarcinomas accounted for approximately two-thirds of the specimens. In addition, all of the adenocarcinomas included in the latter series were associated with Barrett’s oesophagus and the inflammatory nature of this lesion might account for the increase in microvessel density reported. Not all the adenocarcinomas included in the present series were associated with Barrett’s change.

Dvorak\(^3\)\(^3\) has described tumours as ‘wounds that do not heal’ because of the presence of a highly cellular, highly vascularized stroma that resembles the granulation tissue of healing wounds. It is possible that neoadjuvant treatment enhances this granulation-like response within the tumour, accounting for the persistently high serum VEGF levels, microvessel counts and an increase in macrophage infiltration. Abrogation of this proangiogenic inflammatory-type response may be a useful additional therapeutic approach in patients receiving preoperative chemoradiotherapy.

Acknowledgements

This work was funded by a research grant from the Royal College of Surgeons in Ireland.

References

QUERIES TO BE ANSWERED BY AUTHOR (SEE MARGINAL MARKS)

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. Do NOT mark your corrections on this query sheet.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Is there just one Dept of Surgery for both hospitals?</td>
</tr>
<tr>
<td>Q2</td>
<td>Please give all P values above 0.001 exact to three decimal places.</td>
</tr>
<tr>
<td>Q3</td>
<td>Please give all mean counts throughout manuscript to one decimal place</td>
</tr>
<tr>
<td>Q4</td>
<td>Do you mean the chemoradiation regimen?</td>
</tr>
<tr>
<td>Q5</td>
<td>Please add ® or ™ if appropriate, and give location of manufacturer (city and state)</td>
</tr>
<tr>
<td>Q6</td>
<td>Is mean count correct?</td>
</tr>
<tr>
<td>Q7</td>
<td>Please add town/city and state, and indicate whether product name is ® or ™</td>
</tr>
<tr>
<td>Q8</td>
<td>According to Table 1 there were 61 men (66.3 per cent)</td>
</tr>
<tr>
<td>Q9</td>
<td>Please add chapter page numbers</td>
</tr>
<tr>
<td>Q10</td>
<td>Has CPR been defined correctly? Please explain what bars and error bars represent</td>
</tr>
<tr>
<td>Q11</td>
<td>Please give statistical test(s) in Table 1</td>
</tr>
</tbody>
</table>
WILEY AUTHOR DISCOUNT CARD

As a highly valued contributor to Wiley’s publications, we would like to show our appreciation to you by offering a unique 25% discount off the published price of any of our books*.

To take advantage of this offer, all you need to do is apply for the Wiley Author Discount Card by completing the attached form and returning it to us at the following address:

The Database Group
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
West Sussex PO19 8SQ
UK

In the meantime, whenever you order books direct from us, simply quote promotional code S001W to take advantage of the 25% discount.

The newest and quickest way to order your books from us is via our new European website at:

http://www.wileyeyeurope.com

Key benefits to using the site and ordering online include:
• Real-time SECURE on-line ordering
• The most up-to-date search functionality to make browsing the catalogue easier
• Dedicated Author resource centre
• E-mail a friend
• Easy to use navigation
• Regular special offers
• Sign up for subject orientated e-mail alerts

So take advantage of this great offer, return your completed form today to receive your discount card.

Yours sincerely,

Verity Leaver
E-marketing and Database Manager

*TERMS AND CONDITIONS
This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias and major reference works) for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.
REGISTRATION FORM FOR 25% BOOK DISCOUNT CARD

To enjoy your special discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

<table>
<thead>
<tr>
<th>Accounting</th>
<th>Architecture</th>
<th>Business/Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Computer Science</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>Database/Data Warehouse</td>
<td>Civil</td>
</tr>
<tr>
<td>Industria/Safety</td>
<td>Internet Business</td>
<td>Communications Technology</td>
</tr>
<tr>
<td>Organic</td>
<td>Networking</td>
<td>Electronic</td>
</tr>
<tr>
<td>Inorganic</td>
<td>Programming/Software</td>
<td>Environmental</td>
</tr>
<tr>
<td>Polymer</td>
<td>Development</td>
<td>Industrial</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td></td>
<td>Mechanical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Encyclopedia/Reference</th>
<th>Engineering</th>
<th>Finance/Investing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business/Finance</td>
<td>Civil</td>
<td>Economics</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>Communications Technology</td>
<td>Institutional</td>
</tr>
<tr>
<td>Medical Sciences</td>
<td>Electronic</td>
<td>Personal Finance</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>Industrial</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Earth & Environmental Science</th>
<th>Engineering</th>
<th>Finance/Investing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hospitality</th>
<th>Life Science</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Genetics</th>
<th>Landscape Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics/Computational Biology</td>
<td></td>
</tr>
<tr>
<td>Proteomics</td>
<td></td>
</tr>
<tr>
<td>Genomics</td>
<td></td>
</tr>
<tr>
<td>Gene Mapping</td>
<td></td>
</tr>
<tr>
<td>Clinical Genetics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical Science</th>
<th>Mathematics/Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>Endocrinology</td>
<td></td>
</tr>
<tr>
<td>Imaging</td>
<td></td>
</tr>
<tr>
<td>Obstetrics/Gynaecology</td>
<td></td>
</tr>
<tr>
<td>Oncology</td>
<td></td>
</tr>
<tr>
<td>Pharmacology</td>
<td></td>
</tr>
<tr>
<td>Psychiatry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Profit</th>
<th>Psychology</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Physics/Physical Science</th>
<th>Psychology</th>
</tr>
</thead>
</table>
[] I confirm that I am a Wiley Author/Editor/Contributor/Editorial Board Member of the following publications:

SIGNATURE: ..

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE AND NAME: (e.g. Mr, Mrs, Dr) ..

JOB TITLE: ...

DEPARTMENT: ...

COMPANY/INSTITUTION: ...

ADDRESS: ...

...

...

TOWN/CITY: ...

COUNTY/STATE: ..

COUNTRY: ..

POSTCODE/ZIP CODE: ...

DAYTIME TEL: ...

FAX: ...

E-MAIL: ..

YOUR PERSONAL DATA
We, John Wiley & Sons Ltd, will use the information you have provided to fulfill your request. In addition, we would like to:

1. Use your information to keep you informed by post, e-mail or telephone of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.

[] Please tick the box if you do not wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post, fax or e-mail with details of titles and offers that may be of interest to you.

[] Please tick the box if you do not wish to receive this information.

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, UK.

E-MAIL ALERTING SERVICE
We offer an information service on our product ranges via e-mail. If you do not wish to receive information and offers from John Wiley companies worldwide via e-mail, please tick the box [].

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias and major reference works) for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

Ref: S001W
Offprint order form

Journal title

Article reference number

Twenty-five offprints are supplied free of charge to the first named author, or the author named for correspondence. If you would like to purchase further offprints of your paper and journal copies, these are available at pre-publication prices in the quantities below. Only one contributor receives this form, so please ensure that you include the offprint and journal requirements for all the contributors. Offprint orders received after your corrected proofs have been returned, approved for publication, may be subject to a special reprint quotation as they may have to be printed separately and thus incur additional print set-up costs.

Article title

Billing address (if different from delivery address)

Name

Address

Postcode/Zip Code

Telephone

Fax

E-mail

Postcode/Zip Code

Telephone

Fax

E-mail

Note for USA authors: please do not use PO Box numbers as delivery addresses, as we cannot guarantee delivery.

Offprint price list (based on cash with order)

<table>
<thead>
<tr>
<th>Number of copies</th>
<th>1-4 pages</th>
<th>5-8 pages</th>
<th>9-12 pages</th>
<th>13-16 pages</th>
<th>17 pages and over</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>£75/$125</td>
<td>£135/$230</td>
<td>£195/$330</td>
<td>£255/$430</td>
<td>£315/$535</td>
</tr>
<tr>
<td>50</td>
<td>£100/$170</td>
<td>£180/$305</td>
<td>£260/$445</td>
<td>£340/$580</td>
<td>£420/$715</td>
</tr>
<tr>
<td>100</td>
<td>£130/$220</td>
<td>£210/$360</td>
<td>£290/$495</td>
<td>£370/$630</td>
<td>£460/$780</td>
</tr>
<tr>
<td>200</td>
<td>£190/$325</td>
<td>£290/$495</td>
<td>£390/$665</td>
<td>£490/$835</td>
<td>£590/$1000</td>
</tr>
<tr>
<td>300</td>
<td>£250/$425</td>
<td>£370/$630</td>
<td>£490/$835</td>
<td>£610/$1040</td>
<td>£730/$1240</td>
</tr>
<tr>
<td>400</td>
<td>£310/$530</td>
<td>£450/$765</td>
<td>£590/$1005</td>
<td>£730/$1240</td>
<td>£870/$1480</td>
</tr>
<tr>
<td>Per extra 100</td>
<td>£60/$105</td>
<td>£80/$135</td>
<td>£100/$170</td>
<td>£120/$205</td>
<td>£140/$235</td>
</tr>
</tbody>
</table>

Please add 10% to prices if payment is to be made later by invoice or purchase order.

<table>
<thead>
<tr>
<th>Number of pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of offprints required 25 Free+</td>
</tr>
<tr>
<td>Price (add 10% if payment is made by invoice or purchase order)</td>
</tr>
</tbody>
</table>
Journal copies price list (based on cash with order)

<table>
<thead>
<tr>
<th>Number of copies</th>
<th>£12/$20</th>
<th>£20/$34</th>
<th>£28/$48</th>
<th>£36/$60</th>
<th>£44/$75</th>
<th>£52/$88</th>
<th>£60/$102</th>
<th>£68/$115</th>
<th>£76/$130</th>
<th>£84/$142</th>
</tr>
</thead>
</table>

Please **add** 10% to prices if payment is made by invoice or purchase order.

<table>
<thead>
<tr>
<th>Number of journal copies required</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (add 10% if payment is made by invoice or purchase order)</td>
<td></td>
</tr>
</tbody>
</table>

Please ask for a special quote from Advertising Sales (contact details overleaf) if more than 10 journal copies are required.

Payment

Please indicate the method by which you are paying. Payment should be made in sterling or another negotiable currency at the present rate of exchange. Prices are exclusive of VAT and other taxes.

Special notes:
- **Canadian residents:** please add 7% GST
- **VAT:** If the institution/company/individual paying the invoice is VAT registered within the EU please supply the appropriate VAT number. If exempt from VAT please provide proof of exemption.

Method of payment

Paying now
- [] Credit Card
- [] American Express
- [] Diners Club
- [] JCB
- [] Barclaycard/Visa
- [] Mastercard/Access

Please indicate type of card and complete all details accurately.

Card number ___________________________ Security No. ___________________________

Expiry Date __________ Signature ___________________________ Date __________

[] Cheque, please make payable to John Wiley & Sons, Ltd.

Paying later

Send Invoice [] Purchase order number (please enclose) ___________________________

Amount due

<table>
<thead>
<tr>
<th></th>
<th>£Sterling</th>
<th>$US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offprints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal copies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax (VAT/GST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Delivery

Offprints and journal copies are despatched by second class post within the UK and by accelerated despatch elsewhere. Therefore, please allow **6 weeks** from publication for delivery.

Where to send your order

Please return your completed order with your corrected proofs to: **Journals Production Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK** or by fax to: +44 (0)1243 770379;

or to the Journal Editor for the following journals:

- **International Journal of Climatology**
- **Aquatic Conservation: Marine and Freshwater Ecosystems**
- **Journal of Applied Econometrics**
- **Regulated Rivers**
- **Journal of Quaternary Science**